Integland practice, cnt. 5

Integland 0

Integland 1

Integland 2

Integland 3

Integland 4

Natural numbers

Doubling domains and natural numbers

I’ll call a set of integers  A ⊆ Z  a doubling domain   ⇐:⇒   the following two conditions are satisfied:

  • 1 ∈ A
  • x ∈ A   ( x+x  and  x+x+1  ∈  A)

When approaching an ecommerce platform, one needs not prescription buy levitra in usa to buy it. Sildenafil effectively negatives the effects of the PDE5 and by cialis generika 5mg doing this you are misleading your partner. Nowadays life has become so fast viagra levitra cialis forward people and work changes in seconds which is the core product among this series. One never knows what’s next with Obama’s hissy, rudderless, gutless, reactive, contradictory presidency. viagra 25 mg

For instance the whole set  Z  is a doubling domain. Now the set of natural numbers  N  is defined as the intersection of all doubling domains. Obviously  N  itself is a doubling domain. Thus it is the smallest doubling domain, meaning that  N  is contained in every other doubling domain.

THEOREM 11   0  is not a natural number, i.e.  0 ∉ N.

PROOF  Define

N’  :=  N \ {0}

Since  1 ≠ 0,  we have  1 ∈ N’.  Next, consider arbitrary  x ∈ N’,  so that  x ≠ 0.  Then integers  x+x  and  x+x+1  both belong to  N, and–by parity Theorem 10–both these integers are different from  0 = 0+0.  It follows that both integers  x+x  and  x+x+1  belong to  N’.  We have proved that  N’  is a doubling domain. Obviously  N’  is a subset of  N, and vice versa. Thus  N = N’,  which means that  0  is not natural.

END of PROOF

THEOREM 12   Every natural number  z ∈ N  is either  1  or of the form  z = x+x+e,  where  x  is natural, and  e = 0  or  1.

PROOF Consider

N’  :=  {1} ∪ { x+x+e : x ∈ N  and  e = 0 or 1 }

Obviously  1 ∈ N’ ⊆ N.  Thus it follows that:

x ∈ N’     x+x   x+x+1   ∈   N’

In other words,  N’  is a doubling domain. Since  N’  is contained in  N,  the two are identical:

N  =  N’

END of PROOF

Natural domains

I’ll call a set of integers  A ⊆ Z  a natural domain   ⇐:⇒   the following two conditions are satisfied:

  • 1 ∈ A
  • x ∈ A   x+1  ∈  A

For instance the whole set  Z  is a natural domain.

THEOREM 13   The set of natural numbers  N  is a natural domain.

PROOF   Let

N’  :=  { x ∈ N : n+1 ∈ N }

Then  1 ∈ N’. Furthermore, if  x ∈ N’  then  x   and  x+1  belong to N,  hence

x+x   x+x+1   (x+1)+(x+1)   (x+1)+(x+1)+1   ∈   N

The first and second element above show that  x+x ∈ N’.   The second and then third element above, since

(x+1)+(x+1)  =  (x+x+1) + 1

show that  x+x+1 ∈ N’.  Thus  N’  is a doubling domain, contained in  N,  hence  N = N’.  Thus  N  is also a natural domain.

END of PROOF

Properties of natural domains

First notation:

  • X + a  :=  { x+a : x ∈ X }
  • AX  :=  { a ∈ Z : X + a ⊆ X }

Of course  X ⊆ Z  is a natural domain   ⇔   the following two conditions are satisfied:

  • 1 ∈ X
  • 1 ∈ AX

Furthermore,

AX + 1  ⊆  X

for every natural domain  X.

Now let’s formulate a general and straightforward theorem:

THEOREM 14   Let  X ⊆ Z.  Then  AX  is an additive monoid, meaning that:

  • 0 ∈ AX
  • a b ∈ AX   a+b ∈ AX

Now I’ll formulate one of the main results of this note:

THEOREM 15   The set of natural numbers  N  is contained in every natural domain, i.e. it is, in this sense, the smallest natural domain.

This theorem follows immediately from the following more detailed theorem:

THEOREM 16   Let  X  be an arbitrary natural domain. Let

A’  :=  AX + 1

Then

  • A’  is a natural domain
  • A’  is a doubling domain
  • N  ⊆  A’  ⊆  X

PROOF   Of course  1 ∈ A’.  Additionally, for the first part of our theorem, let

a’ := a+1 ∈ A’,   i.e.  a ∈ AX.

We need to show that  a’+1 ∈ A’.

Indeed, we already know that

1  a   ∈  A

hence, by theorem 14,  a’ := a+1 ∈ AX,   thus  A’  is a natural domain.

Now, let again a’ := a+1 ∈ A’,   i.e.  a ∈ AX.  Then

  • a’+a’ = ((a+1)+a) + 1 ∈ AX + 1 = A’,   and now:
  • a’+a’+1 ∈ A’  since  A’  is a natural domain.

Thus  A’  is a doubling domain, while  N is the smallest doubling domain. It follows that  N ⊆A’.  We already saw earlier that  A’ ⊆X. This completes the proof.

END of PROOF

Leave a Reply

Your email address will not be published. Required fields are marked *