Complexity and subcomplexities, Part 3

Foods rich in zinc include wheat germ, oysters, milk full fat, chick peas, rye, lamb, crab cooked, roast beef, chicken breast, cheese, fish, cooked brown rice, low fat yogurt, viagra for sale canada canned baked beans, cashews, pine nuts, pumpkin seeds, oysters, almonds, watermelon, carrots, sesame seeds, broccoli, oysters, banana and almonds to nourish and revitalize the reproductive organs. It is estimated that at any one time, some 16% of the population of the United States is on the higher side as the government (still) does not buy viagra uk place any restrictions on the rates at which medications can be sold unlike other developed countries. Next big thing about Kamagra is surely its availability in three different forms sale of sildenafil tablets of consumption. This is better to consult buy levitra line with a regular medical practitioner while one noticed any one of problems which are as follows – * Improves joint mobility* Increases independence* Alleviates pain* Increases balance and strength* Restores function Physical therapy can be an extremely difficult task.

Logarithm   $\mathit {lt}$   and subcomplexity   $\mathit{C0}$

Let, as always,   $\log$   be the natural logarithmic function. For the given complexity theme we will need the base   $T:=3^\frac 13$   logarithmic function   $\mathit {lt}$,   i.e.

$$ \forall_{x\in(0;\infty)}\quad \mathit{lt}(x)\ :=\ \frac {3\cdot \log(x)}{\log(3)} $$

For instance,   $\mathit {lt}(3^t)\ =\ 3\cdot t$. Now we can define a (pretty ambitious) candidate   $\mathit{C0}$   for a subcomplexity in terms of   $\mathit{lt}\,$:

  • $\mathit{C0}(1)\ :=\ 1$
  • $\forall_{n=2\ 3\ \ldots}\quad \mathit{C0}(n)\ :=\ \lceil\mathit{lt}(n)\rceil$.

The inequalities:

  • $T^3 = 3 < 2^3 < 9 = T^6$
  • $T^3 = 3$
  • $T^9 = 27 < 4^3 < 81 = T^12$
  • $T^{12} = 81 < 5^3 < 243 = T^{15}$
  • $T^{12} = 81 < 6^3 < 243 = T^{15}$
  • $T^{15} = 243 < 7^3 < 729 = T^{18}$
  • $T^{15} = 243 < 8^3 < 729 = T^{18}$

(and equality   $\mathit{C0}(1)=1$)   imply

  • $\mathit{C0}(1)=1$
  • $\mathit{C0}(2)=2$
  • $\mathit{C0}(3)=3$
  • $\mathit{C0}(4)=4$
  • $\mathit{C0}(5)=5$
  • $\mathit{C0}(6)=5$
  • $\mathit{C0}(7)=6$
  • $\mathit{C0}(8)=6$

We see that   $\mathit{C0}$   has the first subcomplexity property   ($\mathit{C0}(1)\le 1$)   by definition. Next,

  • $\mathit{C0}(1\ 1\ +)\ =\ 2 =\ \mathit{C0}(1)\ \mathit{C0}(1)\ +$
  • $\mathit{C0}(2\ 1\ +)\ = \lceil\mathit{lt}(3)\rceil\ =\ 3\ =\ \mathit{C0}(2)\ \mathit{C0}(1)\ +$
  • $\mathit{C0}(2\ 2\ +)\ = \lceil\mathit{lt}(4)\rceil\ =\ 4\ =\ \mathit{C0}(2)\ \mathit{C0}(2)\ +$
  • Let   $a\ge 3$   and   $b\in\{1\ 2\}$.   Then

    $$\mathit{C0}(a\ b\ +)\ = \lceil\mathit{lt}(a\ b\ +)\rceil\ \ =\ \ \left\lceil\mathit{lt}(a)\ \ \mathit{lt}(1\ \frac ba\ +)\ \ +\right\rceil\ \ \le\ \ \mathit{rn}(a)\ \ \left\lceil\frac b{a\cdot\log(T)}\right\rceil\ +$$
    But    $a\cdot\log(T)\ \ge\ \log(3)\ > 1$    hence

    $$\mathit{C0}(a\ b\ +)\ \le\ \mathit{C0}(a)\ b\ +\ \ =\ \ \mathit{C0}(a)\ \mathit{C0}(b)\ +$$

  • Let   $\min(a\ b)\ge 3$.   Then    $a\ b\ \bullet\ >\ a\ b\ +$    hence    $\mathit{lt}(a\ b\ +)\ \le\ \mathit{lt}(a)\ \mathit{lt}(b)\ +$.

Thus we have shown the second subcomplexity property:
$$\forall_{a\ b\in\mathbb N}\quad \mathit{C0}(a\ b\ +)\ \le\ \mathit{C0}(a)\ \mathit{C0}(b)\ +$$

The third property is easier. Let   $a\ b\in\mathbb N$.   Then:

  • if   $\min(a\ b)=1$   then $\mathit{C0}(a\ b\ \bullet)\ <\ \mathit{C0}(a)\ \mathit{C0}(b)\ +$;
  • $\mathit{C0}(2\ 2\ \bullet)\ =\ 4\ =\ \mathit{C0}(2)\ \mathit{C0}(2)\ +$;
  • if   $a\ge 3$   then

    $$\mathit{C0}(a\ 2\ \bullet)\ =\ \lceil\mathit{lt}(a\ 2\ \bullet)\rceil\ =\ \lceil\mathit{lt}(a)\ \mathit{lt}(2)\ +\ \le\ \mathit{C0}(a)\ \lceil\mathit{lt}(2)\rceil\ +\ =\ \mathit{C0}(a)\ 2\ +$$
    i.e.
    $$\mathit{C0}(a\ 2\ \bullet)\ \le\ \mathit{C0}(a)\ \mathit{C0}(2)\ +$$

  • if   $\min(a\ b)\ge 3$   then
    $$\mathit{C0}(a\ b\ \bullet)\ =\ \lceil\mathit{lt}(a\ b\ \bullet)\rceil\ =\ \lceil\mathit{lt}(a)\ \mathit{lt}(b)\ +\ \rceil\ \le\ \lceil\mathit{lt}(a)\rceil\ \lceil\mathit{lt}(b)\rceil\ +\ =\ \mathit{C0}(a)\ \mathit{C0}(b)\ + $$
    i.e.
    $$\mathit{C0}(a\ b\ \bullet)\ \ \le\ \ \mathit{C0}(a)\ \mathit{C0}(b)\ + $$

We have shown that function   $\mathit{C0}$   is a subcomplexity.

Complexity computations with   $\mathit{C0}$

By definition of   $\mathit{C0},$:

  • $\mathit{C0}(1) := 1$
  • $\mathit{C0}(2) := 2$
  • $\mathit{C0}(3) := \lceil\mathit{lt}(3)\rceil = 3$
  • $\mathit{C0}(4) := \lceil\mathit{lt}(4)\rceil = 4$
  • $\mathit{C0}(5) := \lceil\mathit{lt}(5)\rceil = 5$
    • We had all the above equalities but the last one. Since:
      $$ T^{12} = 81 < 125 = 5^3 < 243 = T^{15}$$ so that $$ 12\ \ <\ \ 3\ \mathit{lt}(5)\ \bullet\ \ <\ \ 15$$ i.e. $$ 4\ \ <\ \ \mathit{lt}(5)\ \ < 5$$ it follows that indeed   $\lceil\mathit{C0}(5)\rceil\ =\ 5$. We already know that: $$\forall_{k\in\mathbb N}\quad \mathit{rn}(k)\ \le\ k$$ Thus $$ \forall_{k=1\ldots 5}\quad k\ =\ \mathit{C0}(k)\ \le\ \mathit{rn}(k)\ =\ k$$ Thus, applying nothing but subcomplexity   $\mathit{C0}$   we have obtained an independent demonstration of the proposition: $$ \forall_{k=1\ldots 5}\quad \mathit{C0}(k)\ =\ k $$ (earlier the same was shown by subcomplexity   $m_5$). Actually, $$ T^{12} = 81 < 216 = 6^3 < 243 = T^{15} $$ $$ T^{15} = 243 < 343 = 7^3 < 729 = T^{18} $$ $$ T^{15} = 243 < 512 = 8^3 < 729 = T^{18} $$ i.e. $$ 4 < \mathit{lt}(6) < 5 $$ $$ 5 < \mathit{lt}(7) < 6 $$ $$ 5 < \mathit{lt}(8) < 6 $$ or $$ \mathit{C0}(6) = 5 $$ $$ \mathit{C0}(7) = 6 $$ $$ \mathit{C0}(8) = 6 $$ while we already know, due to the representations: $$6 = 1\ 1\ 1 + 1\ 1\ +\ \bullet$$ etc. that $$\mathit{rt}(6)\le 5\qquad\mathit{rt}(7)\le 6\qquad \mathit{rt}(8)\le 6$$ Thus $$\mathit{rn}(6) = 5$$ $$\mathit{rn}(7) = 6$$ $$\mathit{rn}(8) = 6$$. We also know that    $\mathit{rn}(3^n)\ \le\ 3\ n\ \bullet$,    and on the other hand    $\mathit{C0}(3^n)\ =\ 3\ n\ \bullet$.    It follows that THEOREM 0   (in infix notation!–not Łukasiewicz)

      • $\mathit{rn}(1)=1\qquad\qquad\mathit{rn}(2)=2$
      • $ \forall_{n\in\mathbb N}\quad \mathit{rn}(n)\ \ge\ \mathit{lt}(n)$
      • $ \forall_{n\in\mathbb N}\quad \mathit{rn}(3^n)\ =\ 3\cdot n$
      • $ \forall_{K\ n\in\mathbb N}\quad \left(\ K > 3^n\quad\Rightarrow\quad \mathit{rn}\left(K\right) \ge 3\cdot n + 1\ \right)$
      • $ \forall_{n\in\mathbb N}\quad\mathit{rn}(3^n+1)\ =\ 3\cdot n + 1$

    Leave a Reply

    Your email address will not be published. Required fields are marked *